If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-32y-256=0
a = 1; b = -32; c = -256;
Δ = b2-4ac
Δ = -322-4·1·(-256)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-32\sqrt{2}}{2*1}=\frac{32-32\sqrt{2}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+32\sqrt{2}}{2*1}=\frac{32+32\sqrt{2}}{2} $
| 5-4x=2x-115 | | 3(v-9)=5v+7 | | x^2+60x=4500 | | (3/7)n=24 | | 10x-3(1x-6)=1x+30 | | 2(x-3)-2=-8 | | (4/x-4)+(5x-20)=-5 | | 1x-6(1x+5)=15 | | -5(3w+1)–w=27 | | 3/7*n=24 | | x+(.2x)=128 | | -96=8t(-2t+10) | | 5+48=7-2(n-2) | | 32=(1/3)b*4 | | 3y+35=10+7y | | 3t+5/9=40 | | 9u-18=3(u+6) | | .25(1x+12)-18=7 | | 57x-32/10=-26 | | 32=1/3b*4 | | 35=5b+5 | | 53/8=g-21/4 | | 4x+2(1x+6)=36 | | 4y+33=25+7y | | -6=2.5w-2) | | P+(p÷10)=495 | | 1/3x+3=2x-2 | | -10x+2(3x-4)=-11-3x | | 4/5x+1/2=2/5-1/5x+2/5 | | 2c+13=17 | | 2k/9=4/7 | | 6y(+1)=-2+30 |